Sensitivities and Speeds for Future Spaceand Ground-based Imaging Surveys

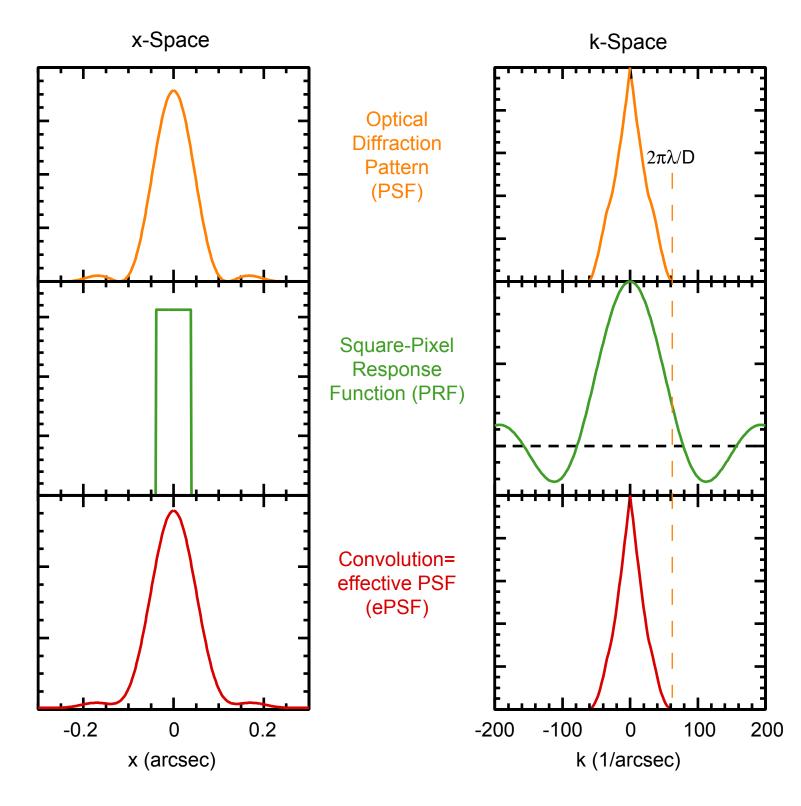
G. M. Bernstein (Univ. of Michigan)

... and thanks to Alex Kim, SNAP, & LSST collaborations

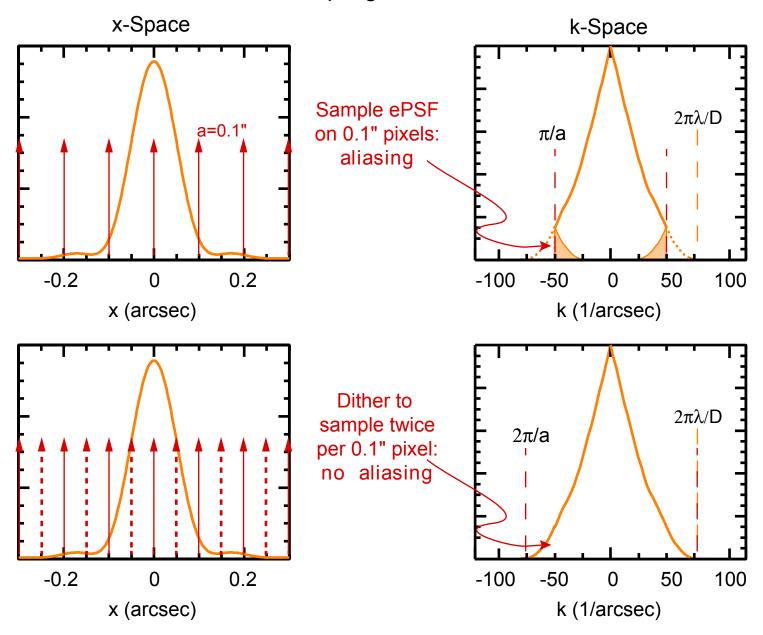
More details in:

G. Bernstein, "Advanced Exposure Time Calculations", PASP January 2002

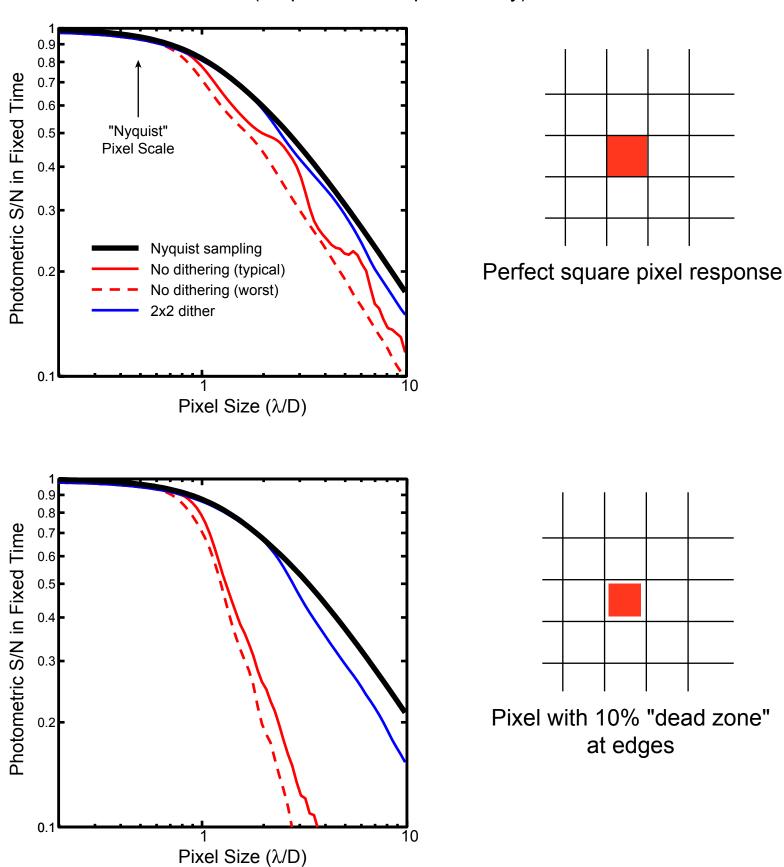
What is the most accurate possible information we can extract from astronomical images about


- Point source photometry (e.g. high-z supernovae)
- Point source astrometry
- Galaxy photometry
- Galaxy ellipticities (weak gravitational lensing)

When we take into account the effects of:


- Shot noise from source
- Shot noise from zodiacal and atmospheric sky brightness
- · Detector read noise and dark current
- Finite resolution from diffraction, aberrations, and seeing
- Finite pixel size and sampling
- Dithering strategies
- Information loss from cosmic rays

What do these calculations tell us about the design choices (e.g. ground vs space) for imaging surveys?


Effect of Pixelization on Point Sources:

Effect of Sampling on Point Sources:


How Much Dithering is Best? (for point-source photometry)

...2x2 dithering pattern recovers nearly all photometric information!

Billion-Pixel Observatories:

Large Synoptic Survey Telescope (LSST) and

	LSST	SNAP
Primary Mirror	8 meters	2.0 meters
Diameter	(6.5-meter	
	equivalent)	
CCD Field of View	8 square degrees	1 square degree
Number of CCD	1.3x10 ⁹	1.3x10 ⁹
pixels		
Angular Resolution	0.5"-0.7"	0.05"-0.1"
	(atmospheric seeing)	(diffraction-limited)
Platform	Ground	Space
Nominal Exposure	20 sec.	300 sec.

\P)

Which is more effective: ground or space survery?

Noise sources favor ground-based for:

- Photometry of uncrowded points sources in U or B abands, or bright sources, e.g. SNe at z<0.7</p>
- ★ Weak lensing observations of large/nearby/bright (m<25) galaxies</p>
- Detection of fast-moving sources, i.e. near-Earth objects

Systematic errors favor ground-based for:

Fast slews and rapid all-hemisphere coverage, e.g. NEOs and prompt gamma-ray burst followup

and space-based for:

- Photometry in I band or near-IR bands, e.g. SNe at z>0.8
- ★ Weak-lensing measurements of m>25 objects for highest S/N and studies of dark matter evolution

and space-based for:

- Stability of PSF and transmission give lowest systematic errors for point-source photometry and weak lensing.
- Stability gives near-perfect difference imaging, e.g. for SNe and microlensing.
- * Stability of PSF and resolution best for crowded-field photometry of static sources
- High-earth orbits offer most reliable cadences for time-variable targets.

Fisher Information for point-source photometry:

For PSF-fitting of flux & position parameters to an image, the errors in fitted parameters are described by the Fisher matrix:

$$\mathbf{F}_{ij} = \sum_{k \in \text{pixels}} \frac{\partial I_k}{\partial p_i} \frac{\partial I_k}{\partial p_j} \quad \text{Cov}(p_i, p_j) = (\mathbf{F}^{-1})_{ij}$$

Sum over all pixels in all (dithered) exposures. In the event of a cosmic ray, we just skip the sum term for the affected pixels.

Figures of Merit for Nyquist-sampled, background-limited observations:

Photometry or detection of point sources:

$$A_{S/N} = \iint d^2k \left| P^2(k) \right| \left| R^2(k) \right|$$

Where P(k) and R(k) are the FT's of the optical PSF and the pixel response function.

Astrometry of point sources:

$$A^{2}_{centroid} = \iint d^{2}k \, k^{2} |P^{2}(k)| |R^{2}(k)|$$

Measurement of galaxy ellipticities – g(k) is FT of galaxy profile:

$$\sigma_e^{-2} \propto \iint d^2k \, k^2 |P^2(k)| |R^2(k)| \left(\frac{\partial g}{\partial |k|}\right)^2 |$$